ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Qiang Huang, Jin Jiang
Nuclear Technology | Volume 207 | Number 5 | May 2021 | Pages 711-725
Technical Paper | doi.org/10.1080/00295450.2020.1794436
Articles are hosted by Taylor and Francis Online.
One of the most important considerations in the design of electronic systems for post-accident monitoring in a nuclear power plant is how to deal with the complex and uncertain radiation environments. Without using special design methodologies and adequate protection, nonradiation-hardened commercial-off-the-shelf (COTS) electronic components can easily be damaged. In this paper, a new design methodology is proposed so that COTS components can be used in building post-accident monitoring systems (PAMSs). To validate the effectiveness of the methodology, a prototype wireless post-accident monitoring system has been designed, implemented, and evaluated in a 60Co gamma radiation environment. It has been concluded that even at a dose rate of 20 krad (Si)/h, the prototype system operates satisfactorily even after being irradiated for 21 h. The system also operates satisfactorily at a low dose rate of 200 rad (Si)/h. It can be concluded that, even with COTS components, the proposed design can effectively extend the lifespan of post-accident monitoring systems in different radiation environments. Based on the experimental results, it can be said with confidence that the developed radiation-tolerant wireless monitoring system can operate for at least 8 h under the highest observed dose rate (530 Sv/h) encountered during the Fukushima Daiichi nuclear disaster and would have been able to provide crucial information to first responders following the accident.