ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Konor Frick, Shannon Bragg-Sitton
Nuclear Technology | Volume 207 | Number 4 | April 2021 | Pages 521-542
Technical Paper | doi.org/10.1080/00295450.2020.1781497
Articles are hosted by Taylor and Francis Online.
This paper provides a comprehensive overview of the development of a NuScale power module in the Modelica process model ecosystem at Idaho National Laboratory (INL) as part of the U.S. Department of Energy’s Office of Nuclear Energy Integrated Energy Systems (IES) program.
Model development has led to the creation of a dynamic NuScale module in the Modelica language that operates under natural circulation and is consistent with design parameters set forth in the design certification documentation for the Nuclear Regulatory Commission (NRC). Controllers have been developed that are consistent with controllers mentioned by NuScale design certification documents. While characteristic time constants may differ due to controller gains, the actual control actions of the system are consistent with NuScale prescribed actions. In addition to natural circulation and controllers, the NuScale power module includes hot channel calculations, reactivity control, and a pressurizer. Hot channel calculations include bulk fluid temperature, outer clad temperature, fuel centerline temperature, and departure from nuclear boiling ratios. Reactivity control incorporates moderator and fuel temperature feedback mechanisms, boron concentration, and control bank positions. A pressurizer with sprays and heaters was developed to maintain primary system pressure within bounds. Further, the model has been developed to allow the user to input beginning-, middle-, or end-of-cycle reactivity conditions.
Three simulations were run that demonstrate the capability of the model controllers to meet target parameters while preserving system values within reasonable bounds. The first simulation is an initialization study at 160 MW(thermal)/50 MW(electric) that compares the model steady-state values with the design certification values. This simulation demonstrates the capability of the model to operate in natural circulation mode and closely matches operating values set forth in the NRC design certification documents. The second simulation is a power uprate from 160 MW(thermal)/50 MW(electric) to 200 MW(thermal)/60 MW(electric), and the final simulation is of a typical summer day where the turbine demand oscillates throughout the day. These illustrate the capabilities of the system to operate under natural circulation while maintaining system parameters within controller bounds and to match turbine output with turbine demand.
This work adds a systems-level model of the NuScale power module with associated control systems, reactivity coefficients, control banks, coolant through fuel temperature profiles, and associated mass flow rates throughout the system that have been added to the Modelica ecosystem. This model will be the basis of work that is utilized in the Joint Use Modular Plant program at INL, which proposes to utilize a single power module to support research, development, and demonstration activities, with a specific aim to demonstrate various IES configurations. As part of the ecosystem, the NuScale module can be quickly integrated with existing Modelica modules (e.g., thermal energy storage, reverse osmosis, high-temperature steam electrolysis, gas turbines) to model energy grids in different geographical locations.