ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
J. C. Rook, K. P. Weber, E. C. Corcoran
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1861-1874
Technical Paper | doi.org/10.1080/00295450.2020.1720557
Articles are hosted by Taylor and Francis Online.
For irradiation experiments (e.g., of per- and polyfluoroalkyl substances), values of nuclear particle flux and absorbed dose rates were obtained for the Safe LOW-POwer Kritical Experiment-2 (SLOWPOKE-2) nuclear reactor at the Royal Military College of Canada using extensive simulations of the reactor core via the Monte Carlo N-Particle code, version 6 (MCNP6). Calculations from this work were compared to data from previously conducted experimental and simulation work to ensure simulation fidelity. In addition, reactor core burnup calculations were conducted using the fuel-depletion capability in MCNP6.1 to address the 30+ years of SLOWPOKE-2 reactor use. The combined absorbed dose rate in the inner irradiation sites was simulated to be 36 ± 1 kGy h−1 at a 10-kW(thermal) power setting, specifically, 20 ± 6 kGy h−1 from neutrons and 16 ± 5 kGy h−1 from photons.