ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
J. C. Rook, K. P. Weber, E. C. Corcoran
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1861-1874
Technical Paper | doi.org/10.1080/00295450.2020.1720557
Articles are hosted by Taylor and Francis Online.
For irradiation experiments (e.g., of per- and polyfluoroalkyl substances), values of nuclear particle flux and absorbed dose rates were obtained for the Safe LOW-POwer Kritical Experiment-2 (SLOWPOKE-2) nuclear reactor at the Royal Military College of Canada using extensive simulations of the reactor core via the Monte Carlo N-Particle code, version 6 (MCNP6). Calculations from this work were compared to data from previously conducted experimental and simulation work to ensure simulation fidelity. In addition, reactor core burnup calculations were conducted using the fuel-depletion capability in MCNP6.1 to address the 30+ years of SLOWPOKE-2 reactor use. The combined absorbed dose rate in the inner irradiation sites was simulated to be 36 ± 1 kGy h−1 at a 10-kW(thermal) power setting, specifically, 20 ± 6 kGy h−1 from neutrons and 16 ± 5 kGy h−1 from photons.