ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. C. Rook, K. P. Weber, E. C. Corcoran
Nuclear Technology | Volume 206 | Number 12 | December 2020 | Pages 1861-1874
Technical Paper | doi.org/10.1080/00295450.2020.1720557
Articles are hosted by Taylor and Francis Online.
For irradiation experiments (e.g., of per- and polyfluoroalkyl substances), values of nuclear particle flux and absorbed dose rates were obtained for the Safe LOW-POwer Kritical Experiment-2 (SLOWPOKE-2) nuclear reactor at the Royal Military College of Canada using extensive simulations of the reactor core via the Monte Carlo N-Particle code, version 6 (MCNP6). Calculations from this work were compared to data from previously conducted experimental and simulation work to ensure simulation fidelity. In addition, reactor core burnup calculations were conducted using the fuel-depletion capability in MCNP6.1 to address the 30+ years of SLOWPOKE-2 reactor use. The combined absorbed dose rate in the inner irradiation sites was simulated to be 36 ± 1 kGy h−1 at a 10-kW(thermal) power setting, specifically, 20 ± 6 kGy h−1 from neutrons and 16 ± 5 kGy h−1 from photons.