ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ka-Ngo Leung
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1607-1614
Technical Note | doi.org/10.1080/00295450.2020.1719800
Articles are hosted by Taylor and Francis Online.
Compact neutron generators can provide a high flux of neutrons with energies ranging from thermal (0.025 eV) to 14 MeV. The application of the deuterium-deuterium, D-10B, and D-7Li nuclear reactions and new advancements in high-flux neutron generator technology along with the commercial availability of high-voltage direct current power supplies enables the production of high-flux 2.45-, 6-, 10-, and 13-MeV neutrons. The high-energy neutrons or the moderated epithermal neutrons from the new compact neutron generator can greatly advance cancer therapy, radioisotope production, neutron yield measurement, special nuclear materials detection, and neutron transmutation doping of silicon.