ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Hongping Sun, Jian Deng, Dahuan Zhu, Yapei Zhang, Wenxi Tian, Suizheng Qiu, G. H. Su
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1481-1493
Technical Paper | doi.org/10.1080/00295450.2020.1713672
Articles are hosted by Taylor and Francis Online.
Sodium combustion oxide aerosols are the main carriers of radioactive materials in a sodium-cooled fast reactor (SFR) during sodium fire accidents. Therefore, it is of great significance to simulate aerosol behavior in sodium pool fires to evaluate radioactive source terms in the containment or environment. In this work, a numerical method has been developed to simulate sodium oxide aerosol behavior during sodium pool fires. The Classical Nucleation Theory has been taken into account to simulate gas-to-particle conversion (GPC). The model has been evaluated theoretically in 280 cases with three main parameters: sodium pool temperature, pool diameter, and oxygen concentration. The correlation established by fitting data points is associated with the sodium evaporation rate. The SFA code has been developed based on advanced sodium pool combustion and aerosol models coupled with GPC correlations. In comparison with the experimental data, the code-calculated average atmospheric temperature, airborne aerosol concentration, and particle size are in good agreement with the data, which indicate that the method is reliable and can be applied in code development in the future.