ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Wade Marcum, Daniel LaBrier, Emory Brown, Yikuan Yan, Nicolas Woolstenhulme
Nuclear Technology | Volume 206 | Number 6 | June 2020 | Pages 895-910
Technical Paper | doi.org/10.1080/00295450.2020.1720559
Articles are hosted by Taylor and Francis Online.
In 2017 the Transient Reactor Test (TREAT) Facility was restarted after having been placed in a standby state in 1994. The TREAT reactor’s restart has since enabled the progressive development of new nuclear technologies within the United States that previously were outsourced to other countries. While the reactor’s restart was a large feat worthy of recognition, the experimental use of its characteristics has required further development of an in-pile experimental infrastructure sufficient to support programmatic needs. This hardware has taken the form of capsule designs (compact and elongated) as well as loop concepts representing the phenomena of interest for a subset of the separate effects tests desired for each respective testing campaign. The transient testing program has been a large integrated effort that aligns with the U.S. Department of Energy’s current needs. This study complements those programmatic elements by developing, fabricating, and demonstrating a full-scale flowing water loop in an out-of-pile environment. The goal of this effort is to develop a pragmatic understanding of the engineering capabilities and limitations associated with geometric form factors, metering technology, and controls logic under the representative thermal-hydraulic conditions that would be experienced within the TREAT reactor during an in-pile reactivity-initiated accident test. The outcomes of this study result in an evaluation of the conceptual design of a comprehensive flowing water loop, including objective figures of merit for comparing unique instrumentation and the basis for their selection during operations. These efforts directly contribute to and are required for the further advancement of transient testing capabilities within the United States.