ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Seok Yoon, Jun-Seo Jeon, Seeun Chang, Deuk-Hwan Lee, Seung-Rae Lee, Geon-Young Kim
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 514-525
Technical Note | doi.org/10.1080/00295450.2019.1632093
Articles are hosted by Taylor and Francis Online.
A geological repository has been considered as one of the best options for the disposal of high-level radioactive waste (HLW), with the concepts of an engineered barrier system (EBS) and a natural barrier system. A compacted bentonite buffer is the most crucial component of the EBS. Because groundwater penetrates the compacted bentonite buffer, it is essential to investigate a water-retention curve (WRC) of the compacted bentonite buffer to evaluate the overall safety performance of the EBS because the WRC of the compacted bentonite buffer can affect the thermal-hydraulic–mechanical behavior of every component of the EBS. Therefore, this technical note reports on laboratory experiments conducted to analyze the WRC for a Korean Ca-type compacted bentonite considering dry density, confined or unconfined condition, and drying or wetting path. Models by Fredlund and Xing and by van Genuchten had the best fit with the experimental data. The results revealed higher water content with smaller dry density and in an unconfined condition and higher total suction during the drying path. Furthermore, the air-entry values (AEVs) and fitting parameters of the van Genuchten model were compared with other Ca-type bentonites produced in Europe. A smaller AEV showed lower expansibility since the AEV is affected in the low-suction range and expansibility.