ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
A. M. Tentner, A. Karahan, S. H. Kang
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 242-254
Technical Paper | doi.org/10.1080/00295450.2019.1636589
Articles are hosted by Taylor and Francis Online.
The SAS4A safety analysis code, originally developed for the analysis of postulated severe accidents in oxide fuel sodium-cooled fast reactors (SFRs), has been significantly extended to allow the mechanistic analysis of severe accidents in metallic fuel SFRs. The SAS4A metallic fuel models simulate the metallic fuel thermomechanical and chemical behavior and track the evolution and relocation of multiple fuel and cladding components during the pretransient irradiation and during the postulated accident, allowing an accurate description of the changes in the local fuel composition. The local fuel composition determines the fuel thermophysical properties, such as freezing and melting temperatures, which in turn affect the fuel relocation behavior and ultimately the core reactivity and power history during the postulated accidents. Models describing the fuel-cladding interaction and eutectic formation, the effects of the in-pin sodium on the in-pin fuel relocation, and the postfailure reentry of the molten fuel and fission gas from the pin plenum have also been added. This paper provides an overview of the SAS4A key metallic fuel models emphasizing the postfailure metallic fuel relocation models included in the LEVITATE-M module of SAS4A. The capabilities of the SAS4A metallic fuel models are illustrated through an extended SAS4A analysis of a postulated unprotected loss-of-flow and transient-overpower accident in the metallic fuel prototype Gen-IV sodium fast reactor. The results show that the maximum relative power reached during the postulated accident is 1.19 P0. The favorable characteristics of the metallic fuel cause a significant decrease in net reactivity and relative power due to prefailure in-pin fuel relocation. Negative net reactivity values persist after cladding failure, and the postfailure fuel relocation events occur at low and decreasing power levels.