ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Katy Huff on the impact of loosening radiation regulations
Katy Huff, former assistant secretary of nuclear energy at the Department of Energy, recently wrote an op-ed that was published in Scientific American.
In the piece, Huff, who is an ANS member and an associate professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois–Urbana-Champaign, argues that weakening Nuclear Regulatory Commission radiation regulations without new research-based evidence will fail to speed up nuclear energy development and could have negative consequences.
C. A. Nixon, W. R. Marcum, K. M. Steer, R. B. Jackson, M. G. Martin, A. W. Weiss
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 218-230
Technical Paper | doi.org/10.1080/00295450.2019.1649583
Articles are hosted by Taylor and Francis Online.
Presently there exist no experimental methods readily available to characterize the comprehensive motion of wire-wrapped pins for the purpose of measuring fluid structure interactions. Specifically, the dearth of capabilities lies in the need to capture pin-to-pin interactions within the bundle that do not have visual access. This study leverages recent previous efforts that have demonstrated the successful use of a distributed strain sensor to characterize the motion of a single wire-wrapped pin under fluid flow and expands through the use of multiple instrumented pins to characterize the simultaneous motion of pin-to-pin interaction. The outcome of this study demonstrates the direct measurement of pin-to-pin contact, rubbing, and interaction over a range of relevant flow rates on a 19-pin wire-wrapped bundle.