ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
C. A. Nixon, W. R. Marcum, K. M. Steer, R. B. Jackson, M. G. Martin, A. W. Weiss
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 218-230
Technical Paper | doi.org/10.1080/00295450.2019.1649583
Articles are hosted by Taylor and Francis Online.
Presently there exist no experimental methods readily available to characterize the comprehensive motion of wire-wrapped pins for the purpose of measuring fluid structure interactions. Specifically, the dearth of capabilities lies in the need to capture pin-to-pin interactions within the bundle that do not have visual access. This study leverages recent previous efforts that have demonstrated the successful use of a distributed strain sensor to characterize the motion of a single wire-wrapped pin under fluid flow and expands through the use of multiple instrumented pins to characterize the simultaneous motion of pin-to-pin interaction. The outcome of this study demonstrates the direct measurement of pin-to-pin contact, rubbing, and interaction over a range of relevant flow rates on a 19-pin wire-wrapped bundle.