ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
Axel Hoefer, Oliver Buss, Michael Schmid
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1578-1587
Technical Paper | doi.org/10.1080/00295450.2018.1560784
Articles are hosted by Taylor and Francis Online.
A general Bayesian framework for best-estimate plus uncertainty predictions of multidimensional continuous observables is presented. Parameterizing uncertainties in terms of multivariate normal distribution models, this Multivariate normal Bayesian model (MNBM) framework allows one to include both measured data and linear constraints in a mathematically consistent way. The resulting updating formulas are generalizations of the updating formulas of the Generalized Linear Least Squares (GLLS) framework, which is widely used for the generation of adjusted nuclear data libraries. While the GLLS methodology is restricted to first-order perturbation theory, there is no such restriction for the considered MNBM framework. This makes it possible to use Monte Carlo uncertainty propagation and to apply the updating formulas directly to the observables of interest without having to first update the input parameter distributions. After a general presentation of the MNBM framework and a brief discussion of its possible applications, the generation of bounding burnup-dependent axial burnup profiles of light water reactor fuel assemblies for the purpose of criticality safety analysis is discussed as an example application.