ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
H. Guo, T. Kooyman, P. Sciora, L. Buiron
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1447-1459
Technical Paper | doi.org/10.1080/00295450.2019.1611304
Articles are hosted by Taylor and Francis Online.
The reduction of the initial excess reactivity in fast reactor cores will enhance the inherent safety level of the cores as it does reduce the impact of control rod withdrawal (CRW) accidents. Compensation for burnup reactivity loss by means of burnable poison (BP) is considered as a possible solution to limit initial excess reactivity. Minor actinides (MAs) challenge long-term nuclear waste management, and they can be transmuted from absorber isotopes to fissile isotopes, which allows them to play the role of BPs.
Two loading modes of MAs as BPs are considered in this paper: The so-called homogeneous transmutation mode mixes MAs with the fuel, and the so-called hybrid transmutation mode packs MAs in independent pins in the fuel assemblies. The content of americium or neptunium in these two modes is considered with regard to current technological feasibility, including burnup, cladding stress, decay heat, and the neutron source of the assemblies considered here. Both of these modes are able to compensate for the reactivity loss of a 3600-MW(thermal) fast reactor and thus reduce excess reactivity at the beginning of cycle.
The impact of MA loading on the core characteristics, including power distribution, material balance, and feedback coefficient, is considered from the assembly level to the core level. The hybrid mode shows better management feasibility while the use of neptunium exhibits a lower impact on the current fuel recycling. Finally, the core behavior during a CRW transient is evaluated, which shows that the core loaded with BPs exhibits better safety performance in CRW transients due to their lower initial excess reactivity.