ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
A webinar, and a new opportunity to take ANS’s CNP Exam
Applications are now open for the fall 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through October 14, and only three testing sessions are offered per year, so it is important to apply soon. The test will be administered from November 12 through December 16. To check eligibility and schedule your exam, click here.
In addition, taking place tomorrow (September 19) from 12:00 noon to 1:00 p.m. (CDT), ANS will host a new webinar, “How to Become a Certified Nuclear Professional.” More information is available below in this article.
Dawn E. Janney, Steven L. Hayes, Cynthia A. Adkins
Nuclear Technology | Volume 205 | Number 11 | November 2019 | Pages 1387-1415
Critical Review | doi.org/10.1080/00295450.2019.1578573
Articles are hosted by Taylor and Francis Online.
The U-Pu-Zr metallic fuels contain multiple phases whose properties and distributions evolve due to factors such as fission, nuclear transmutation, and elemental redistribution under the influence of chemical and thermal gradients. An understanding of experimental data about phases, phase relationships, and phase properties in the U-Pu-Zr system is needed to enable mechanistic modeling of these phenomena and guide future research.
Although U-Pu-Zr alloys have been investigated for more than 60 years, relatively little reliable experimental information is available. Information about the technologically important alloy U-20Pu-10Zr (weight percent) is even more limited. The U-Pu-Zr alloys are difficult materials to study experimentally, and it is therefore important to understand what results have already been obtained, how reliable they are, and where they were reported.
This critical review provides a thorough compilation and critical assessment of the available experimental data involving properties of U-Pu-Zr phases, phase transitions, and phase diagrams, with particular attention to alloys with compositions close to U-20Pu-10Zr (weight percent). It is intended as a resource for fuel designers and modelers and a guide for prioritizing future experimental work.