ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Jie Wang, Yanan Li, Yongfeng Wang, Taosheng Li, Zaodi Zhang
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 978-986
Regular Technical Paper | doi.org/10.1080/00295450.2019.1575122
Articles are hosted by Taylor and Francis Online.
A fast neutron radiography (FNR) system based on the high-intensity deuterium-tritium (D-T) fusion generator (HINEG) facility, which employs a high-intensity D-T fusion generator, was designed. To determine the optimal design of the FNR system, the influence of key parameters [the scattered neutron ratio ns (ratio of scattered neutrons and total neutrons at image detection system), collimator ratio L/D, distance between the sample and image detector t, and sample thickness d] on the spatial resolution and image contrast of the system was analyzed using the FLUKA code. The design parameters were optimized to reduce scattering and thus ensure better spatial resolution. The FNR system was constructed for HINEG according to the optimal design parameters, and FNR experiments were conducted to validate the simulation results and evaluate the actual spatial resolution. The experimental results showed that the spatial resolution of this FNR system is approximately 0.5 mm, which is in agreement with the calculation results.