ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ross Pivovar, Ole Wieckhorst
Nuclear Technology | Volume 205 | Number 7 | July 2019 | Pages 945-950
Regular Technical Paper | doi.org/10.1080/00295450.2018.1548220
Articles are hosted by Taylor and Francis Online.
All licensable critical heat flux (CHF) correlations/regressions models must determine and demonstrate a “design limit” that bounds the CHF correlation predicted/measured residuals via a 95/95 tolerance limit. This is a quick and straightforward calculation when the residuals are well behaved, exhibiting no trends and no heteroscedasticity. However, as models become increasingly complex and as required parameter ranges become more extended, the likelihood of nonconservative subregions increases. A suggested solution from the open literature is the overly conservative approach of basing the design limit on the subregion with the largest variance. This approach unavoidably overly constrains the overall regression model and often is too conservative for subregions due to a loss in degrees of freedom. Quantile regressions alleviate these issues by smoothly varying the design limit based on covariates and adapting to each subregion. Thus, a quantile regression achieves the objective of appropriately bounding all subregions without overly biasing the overall regression model.