ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Cole Gentry, Kang Seog Kim, G. Ivan Maldonado
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 299-317
Technical Paper | doi.org/10.1080/00295450.2018.1486158
Articles are hosted by Taylor and Francis Online.
This paper presents the development of a lattice physics–to–core simulator two-step procedure for the rapid analysis of the Advanced High Temperature Reactor (AHTR). Lattice physics, reflector, and control blade models were developed from which cross-section libraries could be generated for a nodal core simulator. Few-group structures for the core simulator were also generated to account for the neutronic characteristics of AHTR. After developing the AHTR two-step procedure, cross-section libraries were generated using the SERPENT continuous-energy Monte Carlo code. These libraries were then used in the core simulator NESTLE to perform full-core calculations, which were in turn benchmarked against reference SERPENT full-core models. Benchmarking results showed reasonable accuracy of the developed two-step procedure but revealed an inherent inadequacy in the one-dimensional radial reflector model and showed a likely need for a greater number of energy groups than were used in this study.