ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Hangbok Choi
Nuclear Technology | Volume 204 | Number 3 | December 2018 | Pages 283-298
Technical Paper | doi.org/10.1080/00295450.2018.1484646
Articles are hosted by Taylor and Francis Online.
The performance of uranium-plutonium mixed carbide fuel was analyzed based on experimental data produced from the Japan Research Reactor No. 2, the Japan Materials Testing Reactor, and the Fast Flux Test Facility irradiation tests during 1983 to 1992. The analysis includes a review of earlier fuel irradiation test results, material property data, and physics models, and a simulation by a finite element method fuel performance code FEMAXI-6GA to predict the historic results. The simulation results were compared to the measured fission gas release, fuel swelling, and dimensional change of the cladding. The simulation results are reasonably consistent with the measurement. However, a few differences between the simulations and measurements were encountered, which are attributed to the lack of detailed experimental conditions, characteristics of fuel materials, material property data, and physics models. Based on sensitivity analyses of the results to experimental conditions and material property data, it is recommended to develop an experimental plan for the systematic measurements of thermal conductivity, including the effect of porosity, impurities, and stoichiometry, fission gas diffusion, and irradiation-induced swelling and densification, supplemented by advanced modeling and simulation techniques to support advanced fuel development in a cost-effective way.