ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Isaac Saldivar, Sudarshan K. Loyalka
Nuclear Technology | Volume 204 | Number 2 | November 2018 | Pages 172-183
Technical Paper | doi.org/10.1080/00295450.2018.1470865
Articles are hosted by Taylor and Francis Online.
Applications of aerosol dynamics include modeling cloud formation and pollution in atmospheric sciences, inhalation and radiation doses in health physics, and particle transport and contamination in nuclear safety. To improve the fidelity of computed aerosol evolution to realistic process models and phenomena, efforts have been directed at the use of the Direct Simulation Monte Carlo (DSMC) technique. This paper first verifies the results obtained from the DSMC technique against a known analytical solution of a specialized case in which the evolution of a purely growing aerosol is coupled to its environment. Next, it applies the DSMC technique to the evolution of aerosol particles undergoing condensation, coagulation, and deposition as coupled to the environment.