ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
Koichi Uozumi, Kenji Fujihata, Takeshi Tsukada
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 261-271
Technical Paper | doi.org/10.1080/00295450.2018.1454807
Articles are hosted by Taylor and Francis Online.
A parameter-based survey of the synthesis conditions by a so-called pressureless consolidation method to fabricate glass-bonded sodalite waste form for stabilizing fission products generated in pyrometallurgical reprocessing of spent metal fuel was performed. The maximum temperature, the heating duration at the maximum temperature, the glass fraction in the initial material, and the weight load used for pressing the material were chosen as the variable parameters. Accordingly, modified conditions to reduce the maximum temperature and increase the weight load were selected for reducing the volatilized-salt ratio during the heating and the free-salt ratio in the product. By fabricating a simulated waste under the modified conditions, the effect of changing the conditions was confirmed. Leaching tests in pure water using the consolidated products fabricated under both reference and modified conditions showed that the stability of the products was not significantly deteriorated by modifying the heating conditions.