ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Donna Post Guillen, Alexander W. Abboud, Richard Pokorny, William C. Eaton, Derek Dixon, Kevin Fox, Albert A. Kruger
Nuclear Technology | Volume 203 | Number 3 | September 2018 | Pages 244-260
Technical Paper | doi.org/10.1080/00295450.2018.1458559
Articles are hosted by Taylor and Francis Online.
Integrated models are being developed to represent the physics occurring within the high-level and low-activity waste melters that will be used to vitrify legacy tank waste at the Hanford site. These models couple the melt pool, cold cap, and plenum region within a single computational domain. Validation of the models is essential to ensure the reliability of the numerical predictions of the operational melters. Experimental data from laboratory- and pilot-scale tests are thus being used to inform and validate various aspects of the melter model. This paper presents a tiered approach to model validation consisting of a series of progressively more complex test cases designed to model the physics occurring in the full-scale system. A hierarchical methodology has been developed to segregate and simplify the physical phenomena affecting the multiphase flow and heat transfer within a waste glass melter. Four hierarchical levels are defined in a validation pyramid and built up in levels of increasing complexity from unit problems to subsystem cases, to pilot-scale systems, and then to the full-scale system.