ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Mingjun Wang, Annalisa Manera, Victor Petrov, Suizheng Qiu, Wenxi Tian, G. H. Su
Nuclear Technology | Volume 203 | Number 2 | August 2018 | Pages 194-204
Technical Paper | doi.org/10.1080/00295450.2018.1446656
Articles are hosted by Taylor and Francis Online.
In detailed previous work by the authors, an innovative decay heat removal (DHR) system has been proposed and designed for the Integral Inherently Safe Light Water Reactor (I2S-LWR). The current paper studies the inadvertent actuation of one DHR system train during I2S-LWR normal operation due to a false signal or operator action. The RELAP5 code is used to perform a one-dimensional study, and important thermal-hydraulic characteristics, including primary loop coolant flow rate, pressure, temperature, DHR primary-side flow rate, and coolant temperature, are achieved during this transient. Then, a detailed computational fluid dynamics simulation utilizing STARCCM+ is carried out to investigate the coolant mixing characteristics in the downcomer and lower plenum and obtain the local thermal-hydraulic conditions at the reactor core inlet. It is found that as a consequence of inadvertent DHR actuation, the maximum overcooling at the reactor core inlet is about 3 K, which would not result in significant reactivity insertion. Furthermore, a more severe transient of inadvertent DHR operation with intermediate loop break is studied, and the results show that this would not lead to more significant overcooling to the I2S-LWR core compared with inadvertent DHR operation without intermediate loop break. This work is an indispensable supplement for DHR system comprehensive assessment in the I2S-LWR project.