ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Industry Update—November 2025
Here is a recap of recent industry happenings:
TerraPower’s Natrium plans for Wyoming, Utah move forward
TerraPower has reported a number of developments related to its Natrium sodium fast reactor project. In the project’s fifth round of procurement awards, the company awarded three supplier contracts to support the Natrium plant’s construction, which is underway in Kemmerer, Wyo., and is expected to be completed in 2030. AvanTech will design advanced sodium processing system modules and supporting skids for the Natrium plant, as well as fabricate and deliver the test and fill facility cold trap skid. Structural Integrity Associates will design and fabricate the sodium cover gas gamma spectroscopy analysis cabinet, a radiation monitoring system. PAR Systems will design and fabricate the pool handling machine, a specialized crane system for spent fuel pool operations.
A. Nava Dominguez, Y. F. Rao
Nuclear Technology | Volume 203 | Number 2 | August 2018 | Pages 173-193
Technical Paper | doi.org/10.1080/00295450.2018.1442085
Articles are hosted by Taylor and Francis Online.
The Canadian Nuclear Laboratories (CNL) is developing the technologies to enable the use of thorium-based fuels in pressure tube–heavy water reactors (PT-HWRs). One of the key stages in developing the thorium-based fuels for PT-HWRs is the reactor core configuration. Currently at CNL there are 20 core configurations under investigation, which involve several types of thorium-based fuels that could be implemented in a 700-MW(electric)-class PT-HWR. Among these core configurations, four fuel bundle concepts are being considered: (1) the reference (or nominal) 37-element bundle; (2) a 37-element modified bundle, with the center element using a different fuel material; (3) a 35-element bundle; and (4) an 18-element internally cooled annular fuel bundle. This study presents the steady-state subchannel thermal-hydraulic assessment of the 20 core configurations under investigation. The hottest channel approach is used in this study, as it represents the upper limit of a feasible design. The axial and element power distributions used in the analysis correspond to those of the discharge burnup. Three mass flows are considered in this study: 13.5, 21, and 24 kg/s. Five parameters are used to evaluate the fuel channel/bundle performance, namely, minimum critical heat flux ratio, channel pressure drop, enthalpy distribution, void fraction, and core power.