ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
W. F. Jones, W. R. Marcum, A. W. Weiss, C. B. Jensen, G. L. Hawkes, P. E. Murray, D. S. Crawford, J. W. Herter, J. C. Kennedy, N. E. Woolstenhulme, J. D. Wiest, D. B. Chapman, T. K. Howard, G. D. Latimer, A. M. Phillips
Nuclear Technology | Volume 201 | Number 3 | March 2018 | Pages 286-303
Technical Paper | doi.org/10.1080/00295450.2017.1407907
Articles are hosted by Taylor and Francis Online.
The development, characterization, and qualification testing of nuclear fuel at Idaho National Laboratory’s Advanced Test Reactor (ATR) requires extensive design and analysis activities prior to the insertion of an irradiation experiment in-pile. Significant effort is made in the design and development phase of all in-pile experiments to ensure that the maximum feasible impacts of all necessary experimental requirements are satisfied. The advancement of fuel, cladding, and in-reactor materials technology in recent years has introduced complexities associated with the design and construct of in-pile experiments necessitating deeper understanding of boundary conditions and increasingly comprehensive observations resulting from the experiment. Each unique experiment must be assessed for neutronics response, thermal/hydraulic/hydrodynamic performance, and structural integrity. This is accomplished either analytically, computationally, or experimentally, or some combination thereof, prior to insertion into the ATR. The various effects are interrelated to various degrees, such as the case with the experiment temperature affecting the thermal cross section of the fuel or the increased temperature of the experiment’s materials reducing the mechanical strength of the assemblies. Additionally, the feedback between the experiment’s response to a reactor transient could alter the neutron flux profile of the reactor during the transient. Each experiment must therefore undergo a barrage of analyses to assure the ATR operational safety review committee that the insertion and irradiation of the experiment will not detrimentally affect the safe operational envelope of the reactor. In many cases, the nuclear fuel being tested can be double-encapsulated to ensure safety margins are adequately addressed, whereas failed fuel would be encased in a protective capsule. In other cases, the experiments can be inserted in a self-contained loop that passes through the reactor core, remaining isolated from the primary coolant. In the case of research reactor fuel, however, the fuel plates must be tested in direct contact with the reactor coolant, and being fuel designed for high neutron fluxes, they are inherently power-dense plates. The combination of plate geometry, high-power density, and direct contact with primary coolant creates a scenario where the neutronic/thermomechanic/hydrodynamic characteristics of the fuel plates are tightly coupled, necessitating as complete characterization as possible to support the safety and programmatic assessments, thus enabling a successful experiment. This paper explores the efforts of the U.S. High-Performance Research Reactor program to thermomechanically/hydromechanically characterize the program’s wide variety of experiments, which range from stacks of miniplate capsules to full-sized, geometrically representative curved plates. Special attention is given to instances where the combination of experimental characterization and analytical assessment has reduced uncertainties of the safety margins, allowing experiments to be irradiated that would otherwise not have passed the rigorous qualification process for irradiation in the ATR. In some cases, the combined processes have exposed flow and heat transfer characteristics that would have been missed using historical methods, which allows for more accurate and representative postirradiation assessments.