ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Won-Jin Cho, Changsoo Lee, Geon Young Kim
Nuclear Technology | Volume 200 | Number 3 | December 2017 | Pages 225-240
Technical Paper | doi.org/10.1080/00295450.2017.1369804
Articles are hosted by Taylor and Francis Online.
For a spent fuel repository, the possible application of the concepts of a multilayer repository with a two- or three-story disposal tunnel and a multicanister repository in which two or three canisters are emplaced in a deposition hole is assessed from the viewpoint of temperature, mechanical stability, and nuclear criticality. The results show that the concepts of multilayer and multicanister repositories are applicable to the geological repository without deterioration of the mechanical stability and nuclear criticality safety. Their adoption in the spent fuel repository can improve the disposal density up to 200% to 400% depending on the applied peak temperature limit under the given thermal constraint and site conditions.