ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Stephanie H. Bruffey, Robert T. Jubin
Nuclear Technology | Volume 200 | Number 2 | November 2017 | Pages 159-169
Technical Paper | doi.org/10.1080/00295450.2017.1369802
Articles are hosted by Taylor and Francis Online.
In 2010, the Idaho National Laboratory was in the process of removing legacy materials from one of their hot cells. As part of this clean-out effort, five metal capsules and some loose zeolite material were identified as test specimens produced in the late 1970s as part of research and development (R&D) conducted under the Airborne Waste Management Program. This specific R&D effort examined the encapsulation of 85Kr within a collapsed zeolite structure for use as a potential waste form for long-term storage. These reclaimed capsules and loose material presented a unique opportunity to study a potential 85Kr waste form after three half-lives have elapsed. Of the five capsules, the walls of two had been cut or breached during previous experiments. The aim of this study was to produce mounted samples from the two breached samples that could be handled with minimal shielding, assess the physical condition and chemical composition of the capsule walls for each breached sample, and determine if any loss of capsule wall integrity was directly attributable to rubidium, the decay product of 85Kr. The sectioning and mounting of the breached capsules was successfully completed. The capsule wall of these 85Kr legacy waste form capsules was examined by optical microscopy and by scanning electron microscopy and energy-dispersive spectroscopy. Substantial corrosion was observed throughout each capsule wall. The bulk of the capsule wall was identified as carbon steel, while the weld material used in capsule manufacture and/or sealing was identified as stainless steel. A notable observation was that the material used for Kr encapsulation was found adhered to the walls of each capsule and had a chemical composition consistent with zeolite minerals. The results of studies on the retention of Kr by the encapsulation material will be discussed in a subsequent paper. Three legacy capsules remain in storage at Oak Ridge National Laboratory and may not have been breached. These represent an exciting opportunity for continued 85Kr waste form studies and will provide more indication as to whether the corrosion observed in Capsules 2 and 5 is attributable to the breach of the capsule, to Rb-induced corrosion, or to another cause.