ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
R. A. Lefebvre, P. Miller, J. M. Scaglione, K. Banerjee, J. L. Peterson, G. Radulescu, K. R. Robb, A. B. Thompson, H. Liljenfeldt, J. P. Lefebvre
Nuclear Technology | Volume 199 | Number 3 | September 2017 | Pages 227-244
Technical Paper | doi.org/10.1080/00295450.2017.1314747
Articles are hosted by Taylor and Francis Online.
To understand the changing nuclear and mechanical characteristics of spent nuclear fuel (SNF) or used nuclear fuel (UNF) and the different storage, transportation, and disposal systems at various stages within the waste management system, different types of analyses are required. These analyses require the use of assorted tools and numerous types of data. Using the appropriate modeling and simulation (M&S) parameters and selecting from the diversity of analytic tools to conduct SNF analyses can be a tedious, error-prone, and time-consuming undertaking for analysts and reviewers alike. A new, integrated data and analysis system was designed to simplify and automate performance of accurate, efficient evaluations for characterizing the input to the overall U.S. nuclear waste management system—the UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database has been assembled to provide a standard means by which UNF-ST&DARDS can succinctly store and retrieve M&S parameters for specific SNF analysis. A library of various analysis model templates is used to communicate M&S parameters for the most appropriate M&S application. A process manager facilitates performance of actual as-loaded, assembly-specific, and cask-specific evaluations. Interactive visualization capabilities facilitate data analysis and results interpretation. To date, UNF-ST&DARDS has completed (1) explicit depletion and decay analysis of every fuel assembly (~245 000) discharged from commercial U.S. reactors through June 2013, with 13 cooling time steps (results include isotopic compositions for 142 isotopes, and radiation and thermal source terms); (2) SNF radiation dose rate evaluations at 1 m for all the fuel assemblies discharged through June 2013; and (3) criticality, shielding, thermal, and containment analyses of hundreds of loaded casks. UNF-ST&DARDS also provides various automated report generation capabilities with dynamic figure and table update capabilities based on changes to the Unified Database.