ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
Mohammad Pourgol-Mohamad, Mohammad Modarres, Ali Mosleh
Nuclear Technology | Volume 165 | Number 3 | March 2009 | Pages 333-359
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT165-333
Articles are hosted by Taylor and Francis Online.
This paper discusses an integrated thermal-hydraulic (TH) uncertainty analysis methodology with an application to the Loss-of-Fluid Test (LOFT) test facility large-break loss-of-coolant accident (LBLOCA) transient. The methodology is intended for applications to best-estimate analyses of complex TH codes. The goal is to develop an integrated method to make such codes capable of comprehensively supporting the uncertainty assessment with the ability to handle important accident transients. The proposed methodology considers the TH code structural uncertainties (generally known as model uncertainty) explicitly by treating internal submodel uncertainties and by propagating such model uncertainties in the code calculations, including uncertainties about input parameters. The methodology is probabilistic, using the Bayesian approach for incorporating available evidence in quantifying uncertainties in the TH code predictions. The types of information considered include experimental data, expert opinion, and limited field data, in treating both model and input parameter uncertainties. The code output is further updated through additional Bayesian updating with available experimental data from the integrated test facilities. The methodology uses an efficient Monte Carlo sampling technique for the propagation of uncertainty, in which a modified Wilks' sampling criteria of tolerance limits is used to significantly reduce the number of simulations. This paper describes the key elements of the uncertainty analysis methodology and summarizes its application to the LOFT test facility LBLOCA.