ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Carlos Ruiz, Carlos Rinaldi
Nuclear Technology | Volume 198 | Number 3 | June 2017 | Pages 319-326
Technical Paper | doi.org/10.1080/00295450.2017.1297170
Articles are hosted by Taylor and Francis Online.
This work presents the effects that produce the change in entropy during separation processes; it takes into account the dilution of UF6 in a carrier gas (H2, He, N2, Ar, Xe, SF6, etc.). Comparisons were made between two technologies: one a mature process currently used, i.e., centrifugation (process A), and the other in development, i.e., processes based on a laser [Condensation Repression Isotope Separation by Laser (CRISLA), Molecular Laser Isotope Separation (MLIS), etc.] (process B). The calculations were made using the principles of mix thermodynamics. The results indicate that entropy expenditure is two orders of magnitude higher than that necessary to separate isotopes when the amount (of isotopes) is the same in both process A and process B.