ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Startup company looks to develop fusion-powered ships
Fusion energy for commercial use is a technology that is yet to be realized, but one company is already setting its sights on taking it from land to sea.
Dhongik S. Yoon, HangJin Jo, Wen Fu, Qiao Wu, Michael L. Corradini
Nuclear Technology | Volume 198 | Number 3 | June 2017 | Pages 277-292
Technical Paper | doi.org/10.1080/00295450.2017.1311119
Articles are hosted by Taylor and Francis Online.
A Multi-Application Small Light Water Reactor (MASLWR) conceptual design was developed by Oregon State University (OSU) with emphasis on passive safety systems. The passive containment safety system employs condensation and natural circulation to achieve the necessary heat removal from the containment in case of postulated accidents. Containment condensation experiments at the MASLWR test facility at OSU are modeled and analyzed with MELCOR, a system-level reactor accident analysis computer code. The analysis assesses its ability to predict condensation heat transfer in the presence of noncondensable gas for accidents where high-energy steam is released into the containment. This work demonstrates MELCOR’s ability to predict the pressure-temperature response of the scaled containment. Our analysis indicates that the heat removal rates are underestimated in the experiment due to the limited locations of the thermocouples and applies corrections to these measurements by conducting integral energy analyses along with computational fluid dynamics simulation for confirmation. The corrected heat removal rate measurements and the MELCOR predictions on the heat removal rate from the containment show good agreement with the experimental data.