ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Christopher Matthews, Cetin Unal, Jack Galloway, Dennis D. Keiser, Jr., Steven L. Hayes
Nuclear Technology | Volume 198 | Number 3 | June 2017 | Pages 231-259
Critical Review | doi.org/10.1080/00295450.2017.1323535
Articles are hosted by Taylor and Francis Online.
Fuel-cladding chemical interaction (FCCI) is a phenomenon that occurs at the fuel-cladding interface during the irradiation of U-Zr and U-Pu-Zr metallic nuclear fuel and stainless steel cladding. The inter-diffusion zone that develops places both the fuel and cladding at risk through the reduction in cladding strength and the formation of a (U,Pu)/Fe eutectic in the fuel. Due to the impact FCCI has on limiting fuel pin burnup, there is a need for better understanding of the governing FCCI mechanisms in order to make accurate predictions using fuel-performance codes. By performing a critical review of previous work, the physics of FCCI can be separated into individual phenomena so that targeted models can be developed for each. Through examination of experiments conducted both in- and out-of-reactor, the behavior of lanthanides provides a natural separation of models by tracking their behavior through (1) production and transport in the fuel to the clad, (2) interaction with macroscopic changes in fuel topography including cracking and swelling, and finally (3) inter-diffusion at the fuel-cladding interface. Informed by past experience, phenomenological models can be built for each separate effect and subsequently combined in an integral fuel-performance simulation. Prototypical simulation approaches at each level have been included, as well as suggestions for several experiments to help bolster the understanding of irradiated fuel. A robust and predictive FCCI model will provide fuel-performance codes with the ability to predict clad failure and/or fuel eutectic melting. Armed with this information, advanced concepts such as palladium doped fuel, ODS steels, or mitigating reactor designs may be able to reduce FCCI enough to extend fuel burnup beyond its current limits, potentially boosting safety margins and reducing cost through higher fuel utilization.