ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hooman Javidnia, Jin Jiang, Majid Borairi
Nuclear Technology | Volume 165 | Number 2 | February 2009 | Pages 174-189
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT09-A4084
Articles are hosted by Taylor and Francis Online.
This paper presents the development of a flexible and user-friendly reactor core dynamic model of a CANadian Deuterium Uranium (CANDU) reactor for control system applications using the commercial simulation package MATLAB/SIMULINK. The reactor core is divided into 14 zones, and a set of coupled kinetics equations are developed to describe the dynamic behavior of the zones. The interaction between neighboring zones is characterized in terms of coupling coefficients, which basically describe the possibility of a neutron born in one zone causing a nuclear reaction in another zone. The model also includes the dynamics of the xenon and iodine. Nondimensionalized representations of the reactor dynamic model are derived in detail. It is demonstrated that vectorization of dynamic variables can significantly simplify the modeling and simulation process for a multizone reactor. Transient behavior of the reactor has been simulated using the developed model.