ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Timothy J. Drzewiecki, Brian L. Mount, Martin Lopez de Bertodano
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 18-31
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A4059
Articles are hosted by Taylor and Francis Online.
The fast boron shutdown injection system in the CNA II pressurized heavy water reactor consists of a set of jets flowing through a very large moderator tank that contains an array of cylindrical coolant channels. The prediction of the turbulent jet mixing is required to determine an accurate distribution of boron inside the moderator tank. The boron distribution is used to calculate the multidimensional insertion of negative reactivity into the reactor during fast shutdown in a PARCS/RELAP5 model of CNA II.A computational fluid dynamics (CFD) code is used to determine the distribution of boron in the moderator tank. The flow is analyzed with a porous-medium model based on volume-averaged momentum, turbulent kinetic energy, and turbulence dissipation equations. The additional source terms that arise due to the averaging must be constituted. The constitutive relations for the additional source terms that are implemented in the present model are (a) the drag force on an array of cylinders for the momentum equations and (b) the additional mixing effect of the cylinders, which results in the sources of turbulent kinetic energy and turbulence dissipation transport equations.The CFD analysis is performed on a porous, axisymmetric domain. The CFD results are compared with data for the boron concentration distribution obtained in a scaled geometrically similar experiment, demonstrating the validity of the approach. Finally, based on the similarity of turbulent jets, the validated model is scaled up to prototypic conditions and inserted into the PARCS/RELAP5 model.