ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Dong Hun Lee, Dong-Ha Lee, Jae Jun Jeong, Kyung Doo Kim
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 79-84
Technical Note | doi.org/10.1080/00295450.2017.1287503
Articles are hosted by Taylor and Francis Online.
Frictional pressure drop (also called wall drag) for a two-phase flow has been investigated for several decades. However, the two-phase frictional pressure drop models in the state-of-the-art thermal-hydraulic system codes are significantly different from each other, especially in the way to partition the wall friction force of liquid and vapor phases in the two-fluid momentum equations. This may lead to unphysical results in some flow conditions.
In this technical note, the two-phase wall frictional pressure drop models in the RELAP5/MOD3, TRACE V5, and SPACE codes are discussed in terms of the wall friction partition into the liquid and vapor momentum equations. To show the effect of different partition methods in the three codes, we simulated air-water bubbly flows in a horizontal pipe. The results of the calculations show that the partition method has a direct effect on the relative velocity of the two phases, and it may lead to unphysical behaviors of dispersed bubbles and droplets. It is strongly recommended to revisit the two-fluid formulation and the partition method of two-phase wall drag in the state-of-the-art system codes.