ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Dong Hun Lee, Dong-Ha Lee, Jae Jun Jeong, Kyung Doo Kim
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 79-84
Technical Note | doi.org/10.1080/00295450.2017.1287503
Articles are hosted by Taylor and Francis Online.
Frictional pressure drop (also called wall drag) for a two-phase flow has been investigated for several decades. However, the two-phase frictional pressure drop models in the state-of-the-art thermal-hydraulic system codes are significantly different from each other, especially in the way to partition the wall friction force of liquid and vapor phases in the two-fluid momentum equations. This may lead to unphysical results in some flow conditions.
In this technical note, the two-phase wall frictional pressure drop models in the RELAP5/MOD3, TRACE V5, and SPACE codes are discussed in terms of the wall friction partition into the liquid and vapor momentum equations. To show the effect of different partition methods in the three codes, we simulated air-water bubbly flows in a horizontal pipe. The results of the calculations show that the partition method has a direct effect on the relative velocity of the two phases, and it may lead to unphysical behaviors of dispersed bubbles and droplets. It is strongly recommended to revisit the two-fluid formulation and the partition method of two-phase wall drag in the state-of-the-art system codes.