ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Rahman S. Abdulmohsin, Muthanna H. Al-Dahhan
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 17-25
Technical Paper | doi.org/10.1080/00295450.2017.1292818
Articles are hosted by Taylor and Francis Online.
In the dynamic core of nuclear pebble bed reactors, the prediction of the fluid flow within the packing determines the heat transfer characteristics and, hence, the performance of these reactors.
The fluid flow of the gas phase can be characterized and quantified in terms of the pressure drop coefficient. Therefore, in this work, the pressure drop in a packed pebble bed having different aspect ratios (ratio of the diameter of the bed to the diameter of the pebbles) has been measured experimentally in a separate-effects pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter using a differential pressure transducer technique. The effects of superficial gas velocity have been investigated using a range of velocities from 0.01 to 2 m/s covering both the laminar and turbulent flow regimes. In addition, the effect of bed structure (aspect ratio) on the pressure drop coefficient has been investigated for the studied packed pebble bed. The results show the strong dependence of the pressure drop on both the aspect ratio and, hence, the porosity of the bed and the coolant gas velocity. The obtained experimental results have been used to evaluate the predictions of the correlations recommended for pressure drop estimation in packed pebble bed nuclear reactors. The present work provides insight on the pressure drop and fluid flow of the gas phase in the studied bed using an advanced technique and methodology.