ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Rahman S. Abdulmohsin, Muthanna H. Al-Dahhan
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 17-25
Technical Paper | doi.org/10.1080/00295450.2017.1292818
Articles are hosted by Taylor and Francis Online.
In the dynamic core of nuclear pebble bed reactors, the prediction of the fluid flow within the packing determines the heat transfer characteristics and, hence, the performance of these reactors.
The fluid flow of the gas phase can be characterized and quantified in terms of the pressure drop coefficient. Therefore, in this work, the pressure drop in a packed pebble bed having different aspect ratios (ratio of the diameter of the bed to the diameter of the pebbles) has been measured experimentally in a separate-effects pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter using a differential pressure transducer technique. The effects of superficial gas velocity have been investigated using a range of velocities from 0.01 to 2 m/s covering both the laminar and turbulent flow regimes. In addition, the effect of bed structure (aspect ratio) on the pressure drop coefficient has been investigated for the studied packed pebble bed. The results show the strong dependence of the pressure drop on both the aspect ratio and, hence, the porosity of the bed and the coolant gas velocity. The obtained experimental results have been used to evaluate the predictions of the correlations recommended for pressure drop estimation in packed pebble bed nuclear reactors. The present work provides insight on the pressure drop and fluid flow of the gas phase in the studied bed using an advanced technique and methodology.