ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
D. J. Euh, B. G. Huh, B. J. Yun, C.-H. Song, I. G. Kim
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 368-384
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT164-368
Articles are hosted by Taylor and Francis Online.
The reflood rate in a core is an important parameter for core cooling during a large-break loss-of-coolant-accident (LBLOCA) reflood period, and it strongly depends on the thermal-hydraulic conditions in the downcomer. During this period, downcomer boiling has an important influence on the transient behavior of a postulated LBLOCA because it can degrade the hydraulic head in a downcomer and consequently affect the reflood flow rate for core cooling. Although it is recognized that downcomer boiling is critical to correctly predict the reflood phenomena of an LBLOCA transient, especially for a direct vessel injection adapted system like the advanced power reactor APR1400, the amount of experimental data and code assessment in this area is relatively limited. To improve the state of knowledge relative to downcomer boiling, a test program at the Downcomer Boiling (DOBO) facility is progressing for the reflood phase of a postulated LBLOCA. The DOBO facility was designed to meet a full scale for the height and gap of a reactor downcomer. The DOBO test revealed a strong multidimensional boiling behavior, which induces the need for performance evaluation of the best-estimate codes that are used to analyze a nuclear reactor's thermal-hydraulic safety, since they have mostly been used for one-dimensional system behavior. In this study, RELAP, MARS, and TRACE are evaluated by using measured two-phase-flow data. Based on the assessments, the modeling capability and weak points of the safety analysis codes are addressed for multidimensional downcomer boiling phenomena. Two models for a downcomer are considered to assess the codes for the DOBO tests, which are also applied to a plant analysis.