ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
D. J. Euh, B. G. Huh, B. J. Yun, C.-H. Song, I. G. Kim
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 368-384
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT164-368
Articles are hosted by Taylor and Francis Online.
The reflood rate in a core is an important parameter for core cooling during a large-break loss-of-coolant-accident (LBLOCA) reflood period, and it strongly depends on the thermal-hydraulic conditions in the downcomer. During this period, downcomer boiling has an important influence on the transient behavior of a postulated LBLOCA because it can degrade the hydraulic head in a downcomer and consequently affect the reflood flow rate for core cooling. Although it is recognized that downcomer boiling is critical to correctly predict the reflood phenomena of an LBLOCA transient, especially for a direct vessel injection adapted system like the advanced power reactor APR1400, the amount of experimental data and code assessment in this area is relatively limited. To improve the state of knowledge relative to downcomer boiling, a test program at the Downcomer Boiling (DOBO) facility is progressing for the reflood phase of a postulated LBLOCA. The DOBO facility was designed to meet a full scale for the height and gap of a reactor downcomer. The DOBO test revealed a strong multidimensional boiling behavior, which induces the need for performance evaluation of the best-estimate codes that are used to analyze a nuclear reactor's thermal-hydraulic safety, since they have mostly been used for one-dimensional system behavior. In this study, RELAP, MARS, and TRACE are evaluated by using measured two-phase-flow data. Based on the assessments, the modeling capability and weak points of the safety analysis codes are addressed for multidimensional downcomer boiling phenomena. Two models for a downcomer are considered to assess the codes for the DOBO tests, which are also applied to a plant analysis.