ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Kwon-Yeong Lee, Moo Hwan Kim
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 261-272
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3986
Articles are hosted by Taylor and Francis Online.
A theoretical model using a heat and mass transfer analogy was developed to investigate the effects of noncondensable gases on the heat transfer coefficient of steam condensing inside a vertical tube. The Nusselt and Sherwood numbers in the gas phase were modified to incorporate the effects of condensate film roughness, suction, and developing flow. The model predictions showed good agreement with the experimental data obtained for various experimental conditions. A parametric study was conducted using the model with condenser tube diameter as a variable. The results indicated that the effects of noncondensable gases become weak as the inlet mixture Reynolds number (Remix,in = 4[over dot]mmix,in/dimix,in) increases and inlet noncondensable gas mass fraction (Wnc,in = [over dot]mnc,in/([over dot]mnc,in + [over dot]mv,in)) decreases. In addition, the effects of noncondensable gases also become weak as the condenser tube diameter decreases with the same inlet mixture Reynolds number because of interfacial shear stress.