ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jan Machacek, Laurent Cantrel, Peter Kluvanek, Marek Liska, Ondrej Gedeon
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 245-251
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3984
Articles are hosted by Taylor and Francis Online.
Behavior of iodine fission product is of prime importance for short-term radiological consequences in a severe accident occurring on a pressurized water nuclear reactor. Iodine speciation in the reactor coolant system is commonly predicted with severe accident simulation software devoted to the transport and deposition of fission products and structural materials, for instance, the SOPHAEROS module of ASTEC. In these calculation tools, chemical equilibrium is assumed to be reached instantaneously whatever the conditions are. However, some thermodynamic data are still uncertain because of lack of experimental data. Quantum-chemical calculations can be appropriate tools to estimate equilibrium constants in a first step and maybe later to determine some kinetic constants for further implementation in such codes to better assess iodine chemical behavior. This paper is an attempt to calculate some equilibrium reactions for relevant reactions that are susceptible to impact iodine chemistry. The accuracy obtained for such calculations depends on the basis set used. Moreover, relativistic effect has to be taken into account for heavy atoms like iodine or cesium to get reliable predictions.