ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Giovanbattista Patalano, George E. Apostolakis, Pavel Hejzlar
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 191-208
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3981
Articles are hosted by Taylor and Francis Online.
The failure probability of a passive decay heat removal (DHR) system after a loss-of-coolant accident (LOCA) is evaluated as part of a risk-informed design process for a helium-cooled fast reactor. The system was modeled using RELAP5-3D. The epistemic uncertainties in input parameters as well as the epistemic model uncertainties in the code were assessed and propagated through the model using Latin hypercube sampling. The changes in the design that we investigated reduced the overall failure probability of the system by reducing the impact of the major contributor to the failure probability. Sensitivity analyses led to two unexpected results. First, the key factors affecting the system failure probability are the location of the thermal insulation (inside or outside the hot leg) and the uncertainty in the insulation thermal conductivity. Second, the heat transfer coefficient in the core is not as important as one might expect. Our results show that the heat transfer coefficient in the containment structures is more important. Different methods for sensitivity analysis were applied and gave consistent results. The calculated conditional (given a LOCA) failure probability of the passive DHR system was deemed to be unacceptable and led the Massachusetts Institute of Technology design team to adopt an active DHR system as the main mode of DHR for the gas-cooled fast reactor