ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
T. Serpekian, R. Hecker
Nuclear Technology | Volume 34 | Number 2 | July 1977 | Pages 269-289
Technical Paper | Material | doi.org/10.13182/NT77-A39702
Articles are hosted by Taylor and Francis Online.
Investigations of the compatibility of steam generator or heat exchanger materials of a high-temperature nuclear reactor with both the primary and the secondary media of the coolant circuits were conducted. This includes studies on the metal-water reaction, the hydrogen generation involved, and the permeation of the hydrogen into the primary circuit. Permeating hydrogen can cause oxide film reduction on the primary side of the tubes and decarburization of the material. Other phenomena of interest are the possible deposition of carbon and/or the carburization of the steel by the small amounts of carbon monoxide present in the inert helium, used as coolant gas. In addition, the hydrogen permeation under low partial pressures was investigated. The hydrogen release rates (due to the metal-water reaction) were determined for several types of steels for different temperatures. The results served as a basis for an estimate of the hydrogen delivery from the secondary circuit into the primary circuit and its influence on the required gas purification capacity. An attempt is made to explain the irregularities of the hydrogen release rates observed. It appears that the carburization problem is not of major significance under the low carbon monoxide concentrations that must be expected in the coolant under normal operation conditions.