ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
R. A. Borrelli, Joonhang Ahn, Yongsoo Hwang
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 248-264
Technical Paper | doi.org/10.1080/00295450.2016.1273713
Articles are hosted by Taylor and Francis Online.
Many nations are expanding or initiating nuclear energy programs as part of a national energy portfolio. Transitioning to advanced nuclear energy systems improves sustainability and promotes energy independence. These advanced nuclear energy systems also must be shown to enhance safety, safeguards, and security in order to be realistically deployed. This is of particular concern to non–nuclear weapons states, to assure compliance with International Atomic Energy Agency treaty obligations. Consequently, the relatively new research area of safeguardability addresses how to integrate goals for safety, safeguards, and security as part of a design strategy for an advanced fuel cycle. This paper presents an overall set of principles that form the foundation of a comprehensive safeguardability methodology, including the quantitative modeling studies derived therein. Results show an approach for characterizing used fuel, functional components to engineering design for nuclear materials handling facilities, and repository analysis. We conclude with an argument for the necessity of an integrative, systems assessment approach to the safeguardability of an advanced fuel cycle.