ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
R. A. Borrelli, Joonhang Ahn, Yongsoo Hwang
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 248-264
Technical Paper | doi.org/10.1080/00295450.2016.1273713
Articles are hosted by Taylor and Francis Online.
Many nations are expanding or initiating nuclear energy programs as part of a national energy portfolio. Transitioning to advanced nuclear energy systems improves sustainability and promotes energy independence. These advanced nuclear energy systems also must be shown to enhance safety, safeguards, and security in order to be realistically deployed. This is of particular concern to non–nuclear weapons states, to assure compliance with International Atomic Energy Agency treaty obligations. Consequently, the relatively new research area of safeguardability addresses how to integrate goals for safety, safeguards, and security as part of a design strategy for an advanced fuel cycle. This paper presents an overall set of principles that form the foundation of a comprehensive safeguardability methodology, including the quantitative modeling studies derived therein. Results show an approach for characterizing used fuel, functional components to engineering design for nuclear materials handling facilities, and repository analysis. We conclude with an argument for the necessity of an integrative, systems assessment approach to the safeguardability of an advanced fuel cycle.