ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Fermi America looks to go public as NRC accepts COLA for AP1000s
Texas Tech University and Fermi America are now one step closer to realizing their massive vision for the Advanced Energy and Intelligence Campus in Amarillo, Texas, as the Nuclear Regulatory Commission has accepted the first two parts of its combined license application (COLA) for four Westinghouse AP1000s.
Jorge V. Carvajal, Michael D. Heibel, Nicola G. Arlia, Andrew Bascom, Kenan Ünlü
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 201-208
Technical Paper | doi.org/10.13182/NT16-92
Articles are hosted by Taylor and Francis Online.
This paper describes the novel implementation of a vacuum-micro-electronic (VME) device configured as a wireless transmitter capable of transmitting, within a nuclear radiation environment, a radio-frequency signal proportional to a voltage input. The VME device discussed in this paper would enable key operating parameters of every fuel assembly in a commercial reactor core to be continuously monitored without adding vessel penetrations and cabling.
The device's frequency and amplitude response to radiation are discussed, and the results of irradiation testing are presented. The results of the irradiation test show that the device described herein can withstand the exposure to a neutron fluence and gamma-ray dose substantially higher than previously achieved.