ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Jorge V. Carvajal, Michael D. Heibel, Nicola G. Arlia, Andrew Bascom, Kenan Ünlü
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 201-208
Technical Paper | doi.org/10.13182/NT16-92
Articles are hosted by Taylor and Francis Online.
This paper describes the novel implementation of a vacuum-micro-electronic (VME) device configured as a wireless transmitter capable of transmitting, within a nuclear radiation environment, a radio-frequency signal proportional to a voltage input. The VME device discussed in this paper would enable key operating parameters of every fuel assembly in a commercial reactor core to be continuously monitored without adding vessel penetrations and cabling.
The device's frequency and amplitude response to radiation are discussed, and the results of irradiation testing are presented. The results of the irradiation test show that the device described herein can withstand the exposure to a neutron fluence and gamma-ray dose substantially higher than previously achieved.