ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Karl-Fredrik Nilsson, Peter Dillström, Claes-Göran Andersson, Fred Nilsson, Mats Andersson, Philip Minnebo, Lars-Erik Bjorkegren, Bo Erixon
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 3-14
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3964
Articles are hosted by Taylor and Francis Online.
The Swedish KBS-3 copper-cast iron canister for geological disposal of spent nuclear fuel is in an advanced stage. This paper deals with the cast iron insert that provides the mechanical strength of the canister and outlines an approach to assess the failure probabilities for manufactured canisters at large isostatic pressure (44 MPa) that could occur during future glaciations and first steps to derive acceptance criteria to ensure that failure probabilities are extremely small. The work includes a statistical test program using three inserts to determine the tensile, compression, and fracture properties. Specimens used for material characterization were also investigated by microstructural analysis to determine the microstructure and to classify and size defects. It was found that the material scatter and low ductility were caused by many defect types, but slag defects in the form of oxidation films were the most important ones. These data were then used to compute defect distributions for the probabilistic failure analysis of the KBS-3 canisters. A large number of finite element-analyses of canisters were performed at the maximum design load (44 MPa) covering distributions of material parameters and geometrical features of the canisters. The computed probabilities for fracture and plastic collapse were very low even for material data with low ductility. Two large-scale isostatic compression tests of KBS-3 mock-ups to verify safety margins are also described. The failure occurred at loads above 130 MPa in both cases, indicating a safety margin of at least a factor 3 against the maximum design load. As a result of the project, new acceptance criteria are being proposed for insert geometry and material properties, and the manufacturing process for inserts has been modified to ensure that these criteria are always fulfilled.