ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Vinay Kumar, Lalit Singh, A. K. Tripathi
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 20-28
Technical Paper | doi.org/10.13182/NT16-89
Articles are hosted by Taylor and Francis Online.
Any risk in safety-critical or control applications may lead to catastrophic disaster; hence, safety is a primary concern for such applications. The impact of risk varies from minor inconvenience and cost to personal injury, significant economic loss, and death. Therefore, a safety assessment process should be an inherent part of the system development process to make a system safe or to ensure that the effects from failures are minimized. This paper deals with a new probabilistic approach to quantify the safety of safety-critical systems (SCSs) and control systems based on probabilistic safety assessment to deal with the shortcomings of the existing techniques. The methodology has been tested on 29 operational data sets to validate its effectiveness. This paper demonstrates the methodology on the digital feedwater controller system of a nuclear power plant. The results indicate that the method can identify possible hazards and quantify such hazards of a SCS.