ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Ching-Sheng Lin, Tongkyu Park, Won Sik Yang
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 29-46
Technical Paper | doi.org/10.13182/NT16-90
Articles are hosted by Taylor and Francis Online.
This paper presents the core design studies of a sodium-cooled fast reactor (SFR) and a sodium-cooled accelerator-driven system (ADS) for a two-stage fast-spectrum fuel cycle to enhance uranium resource utilization and reduce nuclear waste generation. The first-stage SFR starts with low-enriched uranium (LEU) fuel and operates with the recovered uranium and plutonium from the discharged fuels and natural uranium at equilibrium. The recovered minor actinides (MAs) are sent to the second-stage ADS, where they are burned in an inert matrix fuel form. Reference core designs were developed for a 1000-MW(thermal) LEU-fueled breakeven fast reactor (LEUBFR) and an 840-MW(thermal) MA-fueled ADS blanket. The SFR starts with uranium fuel with a 235U enrichment of 13.6% and reaches a fuel-breakeven core after 14 cycles with an 18-month cycle length. At the equilibrium state, one ADS supports 37 fast reactors. Using the performance parameters of SFR and ADS, the proposed two-stage fuel cycle was evaluated. The results of the equilibrium cycle analysis showed that the two-stage fuel cycle option could achieve a high reduction in waste generation because of the continuous recycling of the plutonium and MAs. In addition, the mass flow data showed that this two-stage fuel cycle option increases the efficiency of natural uranium utilization and reduces the nuclear waste generation compared to the conventional two-stage fuel cycle options based on thermal and fast-spectrum systems.