ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Stephen Priebe, Ken Bateman
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 199-207
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3948
Articles are hosted by Taylor and Francis Online.
The treatment of spent nuclear fuel for disposition using an electrometallurgical technique results in two high-level waste forms: a ceramic waste form (CWF) and a metal waste form. Reactive metal fuel constituents, including all of the transuranic metals and the majority of the fission products, remain in the salt as chlorides and are processed into the CWF. The solidified salt is containerized and transferred to the CWF process, where it is ground in an argon atmosphere. Zeolite 4A is dried in a mechanically fluidized dryer to ~0.1 wt% moisture and ground to a particle-size range of 45 to 250 m. The salt and zeolite are mixed in a V-mixer and heated to 500°C for ~18 h to occlude the salt into the structure of the zeolite. The salt-loaded zeolite is cooled, mixed with borosilicate glass frit, and transferred to a crucible, which is placed in a furnace and heated to 925°C. During this process, known as pressureless consolidation, the zeolite is converted to the final sodalite form and the glass thoroughly encapsulates the sodalite, producing a dense, leach-resistant final waste form. During the last several years, changes have occurred to the process, including particle size of input materials and conversion from hot isostatic pressing to pressureless consolidation. This paper is intended to provide the current status of the CWF process, focusing on the adaptation to pressureless consolidation. Discussions include impacts of particle size on final waste form and the pressureless consolidation cycle. A model is presented that shows the heating and cooling cycles and the effect of radioactive decay heat on the amount of fission products that can be incorporated into the CWF.