ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Applications open for the fall cohort of Mentor Match
Applications are officially open for the second cohort of the American Nuclear Society’s newly redesigned mentoring program. Mentor Match is a unique opportunity available only to ANS members that offers year-round mentorship and networking opportunities to Society members at any point in their education.
The deadline to apply for membership in the fall cohort, which will take place October 1–November 30, is September 17. The application form can be found here.
Wasim Raza, Kwang-Yong Kim
Nuclear Technology | Volume 162 | Number 1 | April 2008 | Pages 45-52
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3932
Articles are hosted by Taylor and Francis Online.
A hybrid multiobjective evolutionary approach to the design optimization of a seven-pin wire-wrapped fuel assembly is applied to achieve an acceptable compromise between two conflicting objectives: enhancement of heat transfer and reduction of pressure drop. Two nondimensional variables, the ratio of wire-spacer diameter to fuel rod diameter and the ratio of wire-wrap pitch to fuel rod diameter, are chosen as design variables. The Latin hypercube sampling method is used to determine the training points. The response surface method is used to approximate the Pareto-optimal front with Reynolds-averaged Navier-Stokes analysis of the flow and heat transfer. The shear stress transport turbulence model is used as turbulence closure. The optimization results are processed by the Pareto-optimal method. The Pareto-optimal solutions are obtained using a combination of the evolutionary algorithm NSGA-II and a local search method. The Pareto-optimal front for the wire-wrapped fuel assembly has been obtained. Six optimal values of the design variables have been obtained using clustering. With the increase in the wire-spacer diameter, both heat transfer and pressure drop in the assembly increase. Increasing the wire-wrap pitch reduces the pressure drop in the assembly at the cost of heat transfer.