ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
K. Tsujimoto, H. Oigawa, K. Kikuchi, Y. Kurata, M. Mizumoto, T. Sasa, S. Saito, K. Nishihara, M. Umeno, H. Takei
Nuclear Technology | Volume 161 | Number 3 | March 2008 | Pages 315-328
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT08-A3929
Articles are hosted by Taylor and Francis Online.
The feasibility for the lead-bismuth-cooled accelerator-driven system (ADS) to transmute minor actinides partitioned from high-level radioactive waste is discussed. Since lead-bismuth will cause considerable corrosion and erosion effects at high temperature, the fuel-clad temperature must be kept as low as possible. Moreover, the most critical issue of the ADS design is the engineering viability of the high-power spallation target and the beam window. The thermal-hydraulic and structural analysis was carried out for both the fuel assembly and the beam window. In addition to the analysis in steady state, the transient behaviors were also studied during typical transient and unprotected accidents. The results showed that engineering viability is reasonably achievable in the nominal operation. For the beam trip, which will be the most frequent transient, the number of events to cause the failure of the beam window is estimated as more than 105. For safety aspects of the ADS during unprotected accidents, the estimated results showed that unprotected loss of flow would cause the most significant problem, if the beam operation was kept. Therefore, high reliability of the beam shutdown is required for the ADS safety.