ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
J. Mazeika, R. Petrosius, V. Jakimaviciute-Maseliene, D. Baltrunas, K. Mazeika, V. Remeikis, T. Sullivan
Nuclear Technology | Volume 161 | Number 2 | February 2008 | Pages 156-168
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT08-A3920
Articles are hosted by Taylor and Francis Online.
The paper presents the long-term safety assessment of the Maisiagala radioactive waste repository (Lithuania) using the advanced computer codes DUST, FEFLOW, and AMBER. The software DUST was employed for calculations of the one-dimensional leaching flux of radionuclides from the repository vault and subsequent transport in the unsaturated zone. Using the mass flux of radionuclides calculated in DUST as a source to the aquifer, the software FEFLOW was used for two-dimensional assessment of activity concentrations of radionuclides in groundwater. Using the groundwater concentrations calculated in FEFLOW, the code AMBER was used to calculate the dose over time at four hypothetical wells downstream from the repository. The well distances ranged from 150 to 1600 m.When the hypothetical drinking water well is installed 150 m from the repository (close to the outside perimeter of the controlled area), the highest effective doses will arise from 3H, 36Cl, and 239Pu. The doses determined by 3H and 36Cl may exceed a dose limit of 1 mSv/yr for 50 to 230 yr after the closure of the facility (1989). The dose of 239Pu will remain almost constant for >60 000 yr after the closure, yet it will not exceed the dose limit value. According to previous studies, the intrusion scenario is much more critical compared to the groundwater exposure pathway in the case of 239Pu (as well as 226Ra).