ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Sungwhan Cho, Jin Jiang
Nuclear Technology | Volume 161 | Number 2 | February 2008 | Pages 98-107
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3916
Articles are hosted by Taylor and Francis Online.
A new technique for analyzing the effect of testing on shutdown system (SDS) number 1 (SDS1) in Canadian deuterium uranium (CANDU) nuclear power plants is proposed. The effect of the test on the core damage probability is quantified using a Markov process model. The model is used to derive the effect of the test frequency on the unavailability and the spurious reactor trip probability. Two core damage scenarios are considered: one from a process failure with the unavailable SDS and the other from a spurious reactor trip. The Markov process model is then used with the core damage scenarios to analyze the effect of the test frequency on the core damage probability. The quantified core damage probabilities indicate that performing more frequent surveillance tests does not necessarily decrease the risk. In fact, there exists an optimal test frequency beyond which the probability of core damage starts to increase. This optimal test frequency is of significance in practice.