ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Wang-Kee In, Tae-Hyun Chun, Chang-Hwan Shin, Dong-Seok Oh
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 69-79
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3914
Articles are hosted by Taylor and Francis Online.
A series of computational fluid dynamics (CFD) simulations has been conducted to analyze the heat transfer enhancement in a fully heated rod bundle with mixing-vane spacers. The predicted Nusselt numbers downstream of the split-vane spacer are compared with the available experimental measurements and with correlation. The CFD calculations at Re = 28000 and 42000 showed a lower heat transfer enhancement close to the space grid but a good agreement of the decay rate with the fully heated experimental data at ~6Dh downstream of the grid. The CFD simulations also showed a maximum enhancement of the heat transfer at 6 to 7Dh downstream of the split-vane spacer due to the multiple vortices predicted near the spacer. In addition, the present paper compares the thermal-hydraulic performance of two different mixing vane spacers, i.e., a split-vane spacer and a hybrid-vane spacer, based on CFD simulations at a pressurized water reactor's operating conditions. The split vane is predicted to have a higher overall heat transfer enhancement but a lower local heat transfer far downstream of the spacer where the minimum departure from nucleate boiling ratio is anticipated.