ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Jin-Young Cho, Jae-Seung Song, Chung-Chan Lee, Sung-Quun Zee, Jae-Il Lee, Kil-Sup Um
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 57-68
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3913
Articles are hosted by Taylor and Francis Online.
A lumped-refined multichannel analysis scheme is developed for a high-fidelity thermal-hydraulic (T-H) calculation through neutronics code coupling and applied to a control element assembly (CEA) ejection accident of the Ulchin Unit 3 nuclear power plant to quantify the conservatism of the conventional scheme. The high-fidelity core minimum departure from nucleate boiling (DNB) ratio calculation is realized by coupling more than two TORC dynamic link libraries (DLLs) under the control of the neutronics code, one for the lumped multichannel calculation and the others for the refined subchannel calculations. Realistic radial boundary conditions are supplied from the lumped multichannel calculation to the refined TORC DLL through the neutronics code. The CEA ejection accident problem is simulated from the DNB limiting conditions for operation condition, which is searched by adjusting the core radial peaking factor at a 30% axial offset power shape. The results indicate that the simplified hot-channel model contains ~15 and 5% conservatism in the core minimum DNB ratio and in the number of failed fuel rods, respectively, and reveals that those conservatisms are mainly due to the unrealistic isolated boundary condition. Therefore, it is concluded that the developed scheme can be effectively used to quantify the conservatism of a conventional DNB evaluation scheme.