ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Jin-Young Cho, Jae-Seung Song, Chung-Chan Lee, Sung-Quun Zee, Jae-Il Lee, Kil-Sup Um
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 57-68
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3913
Articles are hosted by Taylor and Francis Online.
A lumped-refined multichannel analysis scheme is developed for a high-fidelity thermal-hydraulic (T-H) calculation through neutronics code coupling and applied to a control element assembly (CEA) ejection accident of the Ulchin Unit 3 nuclear power plant to quantify the conservatism of the conventional scheme. The high-fidelity core minimum departure from nucleate boiling (DNB) ratio calculation is realized by coupling more than two TORC dynamic link libraries (DLLs) under the control of the neutronics code, one for the lumped multichannel calculation and the others for the refined subchannel calculations. Realistic radial boundary conditions are supplied from the lumped multichannel calculation to the refined TORC DLL through the neutronics code. The CEA ejection accident problem is simulated from the DNB limiting conditions for operation condition, which is searched by adjusting the core radial peaking factor at a 30% axial offset power shape. The results indicate that the simplified hot-channel model contains ~15 and 5% conservatism in the core minimum DNB ratio and in the number of failed fuel rods, respectively, and reveals that those conservatisms are mainly due to the unrealistic isolated boundary condition. Therefore, it is concluded that the developed scheme can be effectively used to quantify the conservatism of a conventional DNB evaluation scheme.