ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Jin-Young Cho, Jae-Seung Song, Chung-Chan Lee, Sung-Quun Zee, Jae-Il Lee, Kil-Sup Um
Nuclear Technology | Volume 161 | Number 1 | January 2008 | Pages 57-68
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3913
Articles are hosted by Taylor and Francis Online.
A lumped-refined multichannel analysis scheme is developed for a high-fidelity thermal-hydraulic (T-H) calculation through neutronics code coupling and applied to a control element assembly (CEA) ejection accident of the Ulchin Unit 3 nuclear power plant to quantify the conservatism of the conventional scheme. The high-fidelity core minimum departure from nucleate boiling (DNB) ratio calculation is realized by coupling more than two TORC dynamic link libraries (DLLs) under the control of the neutronics code, one for the lumped multichannel calculation and the others for the refined subchannel calculations. Realistic radial boundary conditions are supplied from the lumped multichannel calculation to the refined TORC DLL through the neutronics code. The CEA ejection accident problem is simulated from the DNB limiting conditions for operation condition, which is searched by adjusting the core radial peaking factor at a 30% axial offset power shape. The results indicate that the simplified hot-channel model contains ~15 and 5% conservatism in the core minimum DNB ratio and in the number of failed fuel rods, respectively, and reveals that those conservatisms are mainly due to the unrealistic isolated boundary condition. Therefore, it is concluded that the developed scheme can be effectively used to quantify the conservatism of a conventional DNB evaluation scheme.